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The purpose of this short contribution is to report on the development of a Spectral Neighbor Analysis Po-
tential (SNAP) for tungsten. We have focused on the characterization of elastic and defect properties of the
pure material in order to support molecular dynamics simulations of plasma-facing materials in fusion reactors.
A parallel genetic algorithm approach was used to efficiently search for fitting parameters optimized against a
large number of objective functions. In addition, we have shown that this many-body tungsten potential can be
used in conjunction with a simple helium pair potential1 to produce accurate defect formation energies for the
W-He binary system.

I. INTRODUCTION

Advancements in the field of classical molecular dynam-
ics simulation can be classified into three general categories;
i) those that increase the length scales of accessible problems,
ii) extensions of the timescales accessible by modern software
packages and lastly, iii) improvements to the accuracy, quality,
or realism of predictions made by MD. In other words these
three areas, in one way or another, correspond to the comput-
ing hardware, software and fidelity of the approximations that
are used to run the simulation. But while these categories are
distinct, it would be wrong to assume that there is no interde-
pendence between them. In fact, any one of these areas may
be pushed forward by an advancement in any of the other.

The work presented here will fall into the third general cat-
egory of improved fidelity, where we are developing inter-
atomic potentials (IAP) that, as we will show here, approach
the accuracy of Density Functional Theory (DFT) while pre-
serving the scalability of classical MD simulations. Of course
the distillation of a truly many-body energy functional from
DFT into energies and forces that are written on a per-atom
basis comes with certain approximations. Classical MD nec-
essarily uses purely local information to calculate the force
on each atom and the total energy of the system. Without
this near-sightedness, it would not be possible to use the scal-
able parallel algorithms that enable simulations of millions
of atoms on large distributed computer systems. Even with
this short-ranged approximation, many IAP have been suc-
cessful in including multi-body effects through the addition
of higher-order terms in the total energy that take into account
many-body aspects of the local environment such as bond an-
gles, dihedrals, coordination dependence, or even more gen-
erally bond-order dependent terms. While the properties of
materials are best determined from an ab initio level of the-
ory, the study of defects and failure mechanisms necessitates
a length scale that is pushed beyond what is tractable at this
level of theory. In this work, we are concerned with the defect
interactions and failure modes of plasma-facing components,
namely tungsten, in fusion reactors where surface defect fea-
tures range in size from sub-nanometers to millimeters. At the
smallest length scales, an accurate description of a wide range
of these defects is challenging because the local environment
of defect cores is unlike the crystalline matrix. Therefore, the
IAP in MD must be able to simultaneously capture the poten-

tial energy surface of atoms in either of these bonding con-
figurations. Therefore, successful models must in some way
represent multi-body interactions.

II. SNAP FORMALISM

A recent trend in molecular dynamics is to integrate the
advancements from the fields of machine-learning and neu-
ral networks in order to produce more accurate potential en-
ergy surfaces. In essence, this class of IAP dispense with a
fixed functional form in favor of more general statistical re-
lationships that are adjusted under supervised training to re-
produce a large set of training data. This supervised training
data is supplied by the user and consists of a collection of
high-accuracy results from ab initio calculations. The statisti-
cal relationships uses a set of descriptors to map atomic con-
figurations to specific values of energy and force. The main
differences between potentials lie in the set of descriptors that
are used7. The set of descriptors used in the machine-learning
process must be physically motivated, because the potential
must be able to distinguish unique atomic environments, while
at the same time satisfy basic physical principles, such as per-
mutation, translational and rotation invariance.3

The SNAP interatomic potential falls under this umbrella of
machine-learned potentials in that it uses a set of descriptors
of the local environment around an atom in order to calcu-
late the per-atom energy function. This is in direct contrast
to most IAP that use a fixed functional form with a single
or few dependent variables (such as distance, bond order or
angle) to calculate the interactions of atoms. A key advan-
tage of a flexible IAP such as SNAP is that its accuracy is
directly dependent on the number of bispectrum components8

used in the atomic energy expansion. Hence it is possible to
systematically improve the accuracy of the potential, at the
price of increased computational cost. Following the GAP
formalism of Bartok et al.7, SNAP uses the bispectrum com-
ponents of the 4D hyperspherical harmonics on the 3-sphere
to characterize atomic neighborhoods. A key difference be-
tween the GAP and SNAP formalism is that SNAP assumes a
linear relationship between the atomic energy and the bispec-
trum components. The details of the derivation of the SNAP
energy function are described elsewhere2. Here we provide
a brief summary. The potential energy of a configuration of
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atoms with is written as the sum of a reference potential and
the SNAP contribution

E(rN ) = Eref (r
N ) + ESNAP (r

N ), (1)

where E, ERef , and ESNAP are the total, reference, and
SNAP potential energies, respectively. The term rN is a vector
giving the positions of the N atoms in the configuration. In
the present case for tungsten, the ZBL pair potential is used to
capture the short-range repulsive interactions between atomic
cores. Within the SNAP formalism, ESNAP is expressed as
a sum over individual atom energies, each of which is in turn
expressed as a weighted sum over its bispectrum components.

ESNAP (r
N ) =

N∑
i=1

β0 +

K∑
k=1

βkB
i
k (2)

= β0N + β ·
N∑
i=1

Bi (3)

Similarly, the force on each atom j due to the SNAP potential
can be expressed as a weighted sum over the derivatives w.r.t.
j of the bispectrum components of each atom i.

FjSNAP = −∇jESNAP = −β·
N∑
i=1

∂Bi

∂rj
(4)

In this way, the total energy, forces, and also the stress ten-
sor, can be written as linear function of quantities related to
the bispectrum components of the atoms. Given a large set of
training data, it is straightforward to construct a weighted least
squares linear regression problem whose solution provides op-
timal choices for the coefficients β0, ..., βK . Less straightfor-
ward is the determination of optimal values for the so-called
hyper-parameters that define the regression problem. These
include parameters that define the neighborhood of each atom,
as well as parameters that control the extent to which differ-
ent components of the training data are prioritized. The op-
timization of the hyperparameters is discussed further in the
following section.

III. FITTING PROCEDURE

One of the key approximations for interatomic potentials
is the ability to accurately predict the properties of materi-
als/molecules that were not in the training data. This is gen-
erally referred to as the transferability of an IAP. Normally,
the end users select an IAP based on its interpreted perfor-
mance for the experiments they plan to run, we as the devel-
opers of said MD potential are not completely absolved from
these constraints either. Therefore we must be aware of each
step in the fitting procedure that has the ability to bias or af-
fect the accuracy of the IAP for its intended use. We have
identified three main areas where this could occur; i) in the
selection of the training set used in supervised learning, ii)
the choice of the objective functions used during fit optimiza-
tion and iii) interpretation of the optimized hyper-parameters

Figure 1. Schematic of the SNAP fitting procedure.

as it translates to the quality of the IAP. The present work is
focused on the accuracy of tungsten potentials for use in sim-
ulation of plasma-facing materials in a fusion reactor. There-
fore, we have chosen training data and fitting objectives that
reflect properties relevant to this application. It is true that,
in its present state, the reported SNAP potential has not been
rigorously tested for properties outside the training set. How-
ever, as will be shown in the following section, the addition of
specialized training data during the fitting process can correct
for these unforeseen inaccuracies. In addition, the outputs of
the fitting process provide a transparent means to compare the
importance of each training configuration for reproducing the
reference data. We believe this is a particular strength of the
SNAP formalism because it has the capability for end users to
be better informed to the strength and weakness of the IAP.
The more aware we are of the human bias (which may never
be completely removed) that is involved in generating an IAP,
the better the field of MD users can be at objectively select-
ing and interpreting this key approximation of MD simulation
results.

A. Selection of Training Data

Much like the parameterization of other IAP, the goal of the
fitting process is to minimize the discrepancies that occur be-
tween reference data and the predictions made by the new can-
didate potential. Most of the fitting protocol to generate SNAP
potentials is automated and requires little user input after the
training structures are generated. However, the selection of
reference structures is still an area where expert judgement is
required, as it has a strong influence on the accuracy and trans-
ferability of the resulting potential. We chose to begin with the
existing set of training data used to construct the GAP tung-
sten potential6, which is publicly available online12. The GAP
training data consists of positions, total energies(E), forces
on each atom(F ) and virial stresses(σ) for several thousand
small configurations of tungsten atoms. We selected a subset
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of this training data, omitting those structures that we deemed
less relevant to our application.

This addition or subtraction of training data for the needs
of the potential is a unique trait of machine-learned poten-
tials, but to date there are only empirical guidelines for how
this should be managed. It is a future direction of this work to
quantify the impact of certain training data on the quality of
the generated potential. A sound understanding of the trans-
lation of the DFT potential energy surface to an IAP used in
MD will help researchers more efficiently deploy the exten-
sive computing resources needed to large training data sets.
Again, this is an avenue for future work and will not be ad-
dressed in detail here.

During the fitting routine it is advantageous to limit the
number of hyperparameters in order to limit the dimensional-
ity of the search space. In the case of SNAP, this means group-
ing training structures together in order to reduce the degener-
acy of the information provided by any one training geometry.
The process by which these groups are defined is necessarily
subjective. Our goal was to define these groups based on the
differences in bonding environments or defect types. From
the GAP training potential we selected four groups pertain-
ing to primitive cell deformations (x2000 configurations), a
super-cell of BCC tungsten with a single vacancy (x420), free
surfaces with various orientations (x180) and a sampling of a
DFT-MD run of the BCC crystal at 300K (x60). In contrast,
omitted training data pertaining to dislocations and vacancy-
dislocation binding, which was used to fit the GAP potential.
We expect that in order to accurately capture defect properties
relevant to helium implantation in tungsten, a wider variety
of bonding environments such as over- and under-coordinated
atoms must be included in the fit. Therefore, three new train-
ing data groups consisting of a few hundred new geometries
were added. The isotopic compression and dilation of a BCC,
FCC, A15 and simple cubic tungsten crystals form the Equa-
tion of State category shown in Table I. In addition, a 54 atom
supercell of tungsten was melted and a set of 27 of these liq-
uid structures were used to for training. Lastly, 3×3×3 BCC
crystals with a pair of vacancies ranging from the nearest-
to fourth nearest-neighbor positions were included in the fit.
Each of these training geometries was calculated using the
VASP16 plane wave DFT code with a 8 × 8 × 8 Monkhorst
Pack k-point mesh, 600eV plane wave cutoff energy, 0.1eV
Gaussian smearing, PBE exchange-correlation functional and
a GW pseudopotential.

B. Optimization of a SNAP Potential

Once the components of the training data were assembled,
the Single Objective Genetic Algorithm (SOGA) capability
within the optimization software DAKOTA11 is used in order
to search for optimal choices of the hyperparameters. These
hyperparameters are the radial cutoff used to define the SNAP
neighborhood of each atom, and the weights used in formulat-
ing the least squares linear regression problem for the energy,
force, and virial stress data of each training group. Each of
these regression weights is allowed to vary from 100 to 104

Table I. Resulting fitting weights on the provided DFT training data
for the SNAP potential. Values in each column for E, F and σ are
calculated using Equation 5-7, respectively

wtotalE wtotalF wtotalσ

Category Nconfig (eV/atom) (eV/Å) (bar)

Elastic Deforma 2000 1.0 · 107 - 5.2 · 104
Single Vacancya 420 3.2 · 104 4.8 · 106 -
Free Surfacea 180 4.3 · 103 3.9 · 107 -
DFT-MD, 300Ka 60 6.3 · 102 1.1 · 107 -
Equation of Stateb 168 3.7 · 102 7.2 · 103 -
Liquidsb 27 8.2 · 102 2.9 · 107 -
Multiple Vacanciesb 20 1.0 · 105 2.3 · 104 -

a From Szlachta, Reference [6]
b Current Work

in order to properly explore its importance to the overall fit
quality. It is worth mentioning that the absolute values of the
regression weights are arbitrary and only carry meaning when
compared to other regression weights. The last fitting param-
eter is the radial cutoff which is allowed to vary between 4Å
and 5Å, excluding or including the third nearest neighbor in-
teractions at either limit. For a given choice of hyperparam-
eters, the weighted least squares linear regression problem is
formulated and then solved using QR decomposition, yield-
ing optimal values for the vector β, representing a particular
candidate potential.

Of equal importance to the input training data is the set ob-
jective functions that SOGA uses to evaluate the candidate
potentials for evolutionary fitness. These objectives will de-
termine where the resultant IAP is certain to provide accurate
results and should be chosen such that they also span a range
of distinct material properties in order to provide some sense
of transferability. The SOGA objective function is composed
as the sum of eleven distinct error metrics. These include the
relative error in the following properties: lattice parameter,
three elastic constants of the BCC phase, five basic defect for-
mation energies. Also included is the absolute error in en-
ergies and forces summed over all training data. The error
metrics are either obtained directly from fitsnap.py (see Fig-
ure 1) or though a LAMMPS simulation of elastic constants
or defect energies run using the current candidate potential.
After three-hundred candidates have been evaluated, the ge-
netic algorithm will take the highest ranking fits and perform
breeding and mutation steps to initialize the next generation of
candidates. In this gradient free genetic algorithm the search
could in principle continue indefinitely. However, we saw
steady improvement in the overall accuracy metric (sum of all
errors) for the first ten generations, after which no significant
improvement was observed.

C. Interpretation of Fitting Parameters

After an optimized potential is generated from the previous
steps, a natural question to ask is how much did each group of
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training data influence the overall objective function? Table I
displays the resultant fitting parameters for the best perform-
ing SNAP result using the SOGA algorithm. In this table it is
useful to compare the effective weights of each category for
a given property (E, F or σ) and see which training geome-
tries dominate the resultant fit(Rcut = 4.734Å). These effec-
tive weights show the relative importance of different types
of training data in the final fit and are given by the following
formulas

wtotalE = φjE ·Nconfig (5)

wtotalF = φjF ·
Nconfig∑
i=1

3 ·N i
atoms (6)

wtotalσ = φjσ · (6 ·Nconfig) (7)

In Equations 5-7, φjα is the weight assigned to group j
for property α. These are the weights adjusted during the
DAKOTA optimization. For each training configuration, there
is just one energy term and six components of the stress tensor.
Meanwhile, there are three forces per atom for each configura-
tion which is shown in Equation 6 as an explicit sum over the
number of configurations in group j. The effective weights,
not group weights, should be used to judge the relative impor-
tance of each of type of training data. The largest effective
weight for energies belongs to the set of elastic deformation
training data while the free surface and liquid configurations
were roughly equivalent in terms of their importance in pro-
ducing accurate forces. Including the liquid structures was
precisely for this reason, though the result was not guaran-
teed. A liquid samples a number of unique under and over co-
ordinated bonding environments that we believe translates to
better predictions of defect properties in tungsten where atoms
are forced into energetically unfavorable configurations. It is
not surprising then to see the two most ’abnormal’ bonding
environments, free surface and liquid configurations, to dom-
inate the fit for producing accurate forces.

IV. RESULTS

Here we draw comparisons to a handful of well known W-
potentials that span a variety of functional forms and com-
putational costs, this includes the GAP potential that shares
training data with the current SNAP potential.

It is common for any IAP to test the accuracy of the avail-
able structural and mechanical properties for the material of
interest, these are most commonly the lattice parameter and
elastic constants of the stable phases. For tungsten, this is not
a complicated task since the α phase (BCC) is the only sta-
ble structure of the pure phase so there are far fewer target
structural properties to meet. The A15 phase is predicted to
be metastable below the melting temperature, but is not in-
cluded as a fitting objective of the optimization process, we
have however confirmed that the A15 phase is less stable than
BCC tungsten at zero kelvin. The collection of predicted elas-
tics constants as they compare to the DFT data used as the

Table II. Structural and mechanical properties of tungsten predicted
from common interatomic potentials

DFTa EAMb MEAMc GAPd SNAPe

a0 (Å) 3.1803 3.165 3.164 3.1803 3.1805
C11 (GPa) 517 517 533 518 518
C12 (GPa) 198 200 205 198 195
C44 (GPa) 142 156 163 143 144

a Derlet, Reference[9]
b Juslin, Reference [1]
c Scheiber, Reference [5]
d Szlachta, Reference [6]
e Current Work

training reference as well as an EAM, MEAM and GAP po-
tential are shown in Table II. Excluding the DFT data, all val-
ues in Table II and III were calculated by the current authors
using the LAMMPS MD package which contains all of these
potentials. Where available our predictions are compared to
reported results in the original published work for each po-
tential all of which agree within the numerical precision that
is reported in our tables. The fact that each of these poten-
tials have been run by the current authors using a single MD
engine will become very important when timing data is pre-
sented later in this section. Most of the potentials show good
accuracy for the lattice constant and elastic constants of the
α phase, with the maximum discrepancy with respect to the
DFT data being a few GPa or single digit percent error. The
one exception is the MEAM potential, which is significantly
less accurate for the elastic constants. This result is encourag-
ing for the SNAP potential presented here, the extremely low
discrepancy to DFT indicates that the SNAP formalism can
easily capture atomic interactions in a crystalline system.

On the other hand, the accuracy of predicted defect forma-
tion energies shows much greater variability over the different
tungsten potentials. The top section of Table III shows the
defect formation energies for a pure tungsten system which
includes the self-interstitial at the tetrahedral and octahedral
sites, dumbbell defects in the [110] and [111] directions, sin-
gle vacancies and lastly the binding energy between two va-
cancies in the nearest-neighbor positions. Each of these de-
fect formation energies, except for the divacancy binding en-
ergy, were used as a fitting objective for optimizing SNAP
in DAKOTA. In other words, in addition to reproducing the
DFT forces and energies, the SNAP parameterization process
attempts to minimizes these defect formation errors. Hence,
it is not unexpected that the current SNAP potential outper-
forms all of the previous tungsten potentials. It is impressive
that the SNAP potential predicts a repulsive divacancy binding
energy at the nearest-neighbor (NN) position, while both both
the EAM and MEAM potentials incorrectly predict a weak at-
tractive interaction. SNAP was not explicitly trained for this
property. In the high temperature environment of a fusion re-
actor, this property plays a key role in He bubble formation.
To further test this potential for material properties outside the
training set that are relevant to the fusion application, we have
chosen to incorporate the He/He and He/W pair potentials de-
veloped by Juslin and Wirth for use with the EAM tungsten
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Table III. Defect formation energies for BCC tungsten (eV)

DFTa EAMb MEAMc GAPd SNAPe

EW−Tetra 11.1 10.4 11.3 12.8 11.1
EW−Octa 11.7 10.4 13.6 13.1 11.5
EW−[110]d 9.8 10.3 9.1 11.8 9.8
EW−[111]d 9.6 9.8 10.4 11.1 9.7
EW−vac. 3.3 3.7 4.0 3.3 3.2
EW−divac.

f 0.1 -0.4 -0.2 0.4 0.1
EHe−Tetr 6.2 6.2 6.4 6.3 6.4
EHe−Oct 6.4 6.2 6.4 6.3 6.3
EHe−Subs 4.7 4.8 5.3 4.3 4.3
E2He−Tetr

g 1.0 0.9 0.6 0.8 1.0

a W: Derlet, Reference [9], He: Becquart, Reference [10]
b Juslin, Reference [1]
c Scheiber, Reference [5]
d Szlachta, Reference [6]
e Current Work
f Binding energy at nearest neighbor positions
g Binding energy at adjacent tetrahedral sites

potential.1 We have calculated defect formation energies of
helium defects within the tungsten matrix. The results are dis-
played in the lower section of Table III.

The defect types calculated are the insertion of a single He
into the tetrahedral or octahedral sites of BCC W, a substitu-
tion of He for a single W atom and the binding energy of two
He atoms in adjacent tetrahedral sites of BCC tungsten. Com-
paring the relative error of each potential, the SNAP potential
predicts formation energies within a few percent (< 3.5%) of
the DFT reference for all defects, except the He substitution,
which is 9% lower than the expected value of 4.70 eV.

The relative errors across all potentials tested here are visu-
ally displayed in Figure 2. It is interesting to note the differ-
ences in the GAP and SNAP potentials. These two IAP share
much of the same training data. However, the GAP training
data did not include any point defect structures, other than the
single vacancy structure. Similarly, the SNAP training data
also did not include any point defect structures, other than the
divacancy structures. However, by including defect formation
energies as objectives, the DAKOTA optimization guided the
SNAP potential towards high accuracy for the tungsten defect
structures. Interestingly, these two machine-learned potentials
show great flexibility in which material properties can be ac-
curately captured. This is a feature of the atomic descriptors
that underline the potential energy surface of both. Again we
should emphasize that the SNAP potential here was trained
against material properties that are relevant to the simulation
of tungsten as a diverter material in fusion reactors. The high
temperature helium environment guided the choice of these
defects as objective functions. It is a difficult to directly as-
sess the loss of transferability of this SNAP IAP because the
number of configurations and material properties outside the
training set vastly exceeds those that are included. As a new
research direction, we are currently exploring the strategy of
sampling MD trajectories generated using the SNAP poten-
tial and testing their accuracy against DFT. For now, this new
SNAP potential has been shown to accurately reproduce elas-

Figure 2. Collection of W-defect formation energies for commonly
used interatomic potentials. The raw data shown here is also con-
tained in Table III, DFT reference data taken from Derlet et. al.
(2007) and Becquart et. al. (2007) for W and He defects, respec-
tively.

tic constants and defect formation energies to high accuracy.
These properties are essential for the prediction of He bub-
ble formation in plasma-facing materials. There is room for
improvement in the accuracy of the He defects. These are
the largest errors predicted by the SNAP potential. We see
the inclusion of W-He and He-He interactions into the SNAP
formalism as the next stages of this work, and progress is cur-
rently being made in this avenue.

Before closing this section it is worth addressing the prob-
lem of computational cost of each of the tungsten poten-
tials that are highlighted here. It is true that the added ac-
curacy of GAP or SNAP comes with a significant computa-
tional cost with respect to EAM or MEAM. It is important to
provide realistic timing data so that users are well informed
of the strengths and weaknesses of each potential. Each of
these potentials is implemented into the LAMMPS MD soft-
ware package4, which is freely available online13. The EAM,
MEAM, and SNAP potentials can be invoked within any
standard build of LAMMPS, provided it has been compiled
with the corresponding optional package, MANYBODY, MEAM,
SNAP, respectively. The GAP potential requires compiling
LAMMPS with the USER-QUIP optional package, which
provides a library interface to the QUIP software package.15

Further documentation, input files and simple test problems
for this SNAP potential are now included in the LAMMPS
distrbution. More technical details about this potential can be
found online14.

We measure computational cost by running a short tungsten
MD simulation with each potential on one node of a high end
computer. We repeat this over a wide range of atom counts,
because the optimal number of atoms per node is different for
different potentials. For each potential, we experimented with
the different available build options and show results for the
best choice for each potential. We used a single Intel Broad-
well node of Sandia’s Serrano computing cluster. The node
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Figure 3. Log-log plot of computational speed versus atom count for
the different tungsten potentials using a single Intel Broadwell node.
For each potential, the speed in atom-timesteps/sec becomes roughly
constant for sufficiently large atom count, reflecting the linear scaling
of the underlying LAMMPS neighborlist algorithm.

consists of two, 2.1 GHz Intel Broadwell E5-2695 v4 proces-
sors with 18 physical cores each. At runtime, the performance
of each potential was optimized by varying the number of MPI
tasks while adjusting the number of OpenMP threads per MPI
task to keep the total number of threads on the node equal to
36, the total number of cores. We did not enable hyperthread-
ing, non-standard NUMA settings, or leaving some core idle.
The timings for each potential are shown in Figure 3. Several
general trends are manifested and are worth discussing here.
Each potential undergoes a transition from a roughly constant
maximum speed to strongly decreasing speed as the problem
size is reduced. The maximum speed decreases by six orders
of magnitude in going from EAM to MEAM to SNAP to GAP.
The critical atom count is smaller for the more expensive po-
tentials.

We conclude that the more expensive potentials, specifi-
cally SNAP and GAP, scale much better down to small atom

counts per node. This can be seen by the magnitude of the fall
off at low atom counts as compared to the performance at high
atom counts each potential. For EAM, there is approximately
a 5×103 difference in performance in going from the largest to
the smallest atom counts, while for SNAP there is only a factor
of ten difference. In a practical sense, this means that a fixed-
size SNAP MD simulation can be distributed across a much
larger compute platform than would be possible with the same
fixed-size EAM or MEAM simulation. Consequently, the dif-
ference in the time to solution between SNAP and EAM will
be much less than the raw computational cost would indicate.
This is an important aspect of high performance computing
to consider as the push toward exascale machines comes to
fruition in the next few years. Efficiently utilizing all of the
resources on extreme-scale platforms is a challenging prob-
lem, which can be mitigated by deployment of high-accuracy
compute-intensive MD potentials such as SNAP.

V. CONCLUSIONS

In this report we have reported on the development of a
quantum accurate SNAP potential for tungsten as well as re-
ported data showing accurate helium defect properties within
the tungsten matrix by merging the SNAP IAP with the repul-
sive pairwise W-He interactions from Juslin1. We believe that
the improved accuracy for both W and W-He defects will play
an important role in the prediction of He bubble formation and
subsequent failure mechanisms of plasma-facing components.
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